
Methods for embedded systems design with on-chip learning
neural networks

A. Tisan, C. Gavrincea, S. Oniga, A. Buchman
Electrotechnical Department

North University of Baia Mare
Baia Mare, 430083, Romania

0362-401265, 0262-276153, atisan@ubm.ro

Abstract

In this paper, we propose a method to implement in FPGA circuit (Field Programmable Gate
Array) an embedded system with on-chip learning neural network. The architecture proposed
herein takes advantage of distinct modules for controlling the peripherals of the development
board and for data processing as forward and backward stages of the propagation and learning
phase. The architecture is easily scalable and able to cope with arbitrary network sizes with the
same hardware.

1. INTRODUCTION

Signal processing systems for pattern recognition
will have to operate in rapidly changing environments.
To suitably adapt to the varying requirements, control
strategies targeted at selecting and tuning the signal
processing algorithms need to be developed.

For modeling dynamical systems, as neural
networks with on-chip learning, we have designed a
hardware – software platform powerful and flexible
enough to allow NNs of different sizes to be
efficiently computed.

We have developed an extendable digital
architecture for the implementation of a neural
network (NN) with on-chip learning using field
programmable gate arrays (FPGAs) and a design
methodology that allows the system designer to
concentrate on a high level functional specification.

For this, we have created a new library Simulink
block set constituted by Simulink Xilinx blocks,
MCode blocks, VHDL blocks and an EDK processor
block. With these new blocks, the designer will be
able to develop the entire neural network by
parameterize the ANN topologies as number of
neurons and layers.

The implementation goal is achieved by using the
Mathworks’ Simulink environment for functional
specification and System Generation to generate the
VHDL code according to the characteristics of the
chosen FPGA device.

The Xilinx System Generator is used in order to
provide the capability to model and implement high
performance digital processing systems in field-
programmable gate arrays (FPGAs) using Simulink.

The Xilinx Blockset contains bit and cycle-true
models of arithmetic and logic functions, memories,
and DSP functions for parallel processing such as
artificial neural networks.

Another import role of the System Generator is to
converts a Simulink model of Xilinx blocks into an
efficient hardware implementation that combines
synthesizable VHDL and intellectual property blocks
that have been developed to run efficiently in FPGAs.

2. EMBEDDED SYSTEM DESIGN

The entire proposed concept relies on the idea that
a FPGAs implementable neural network can be
reached only by choosing the predesigned generic
blocks and to set the parameters of the network into a
pop-up window.

2.1. Peripherals control block design

In order to control the peripherals of the
development board, the MicroBlaze processor is used.

International Symposium for Design and Technology of Electronic Packages 13th Edition, Baia Mare, Romania

ISBN 978-973-713-188-1 283

The MicroBlaze is a standard 32-bit RISC
Harvard-style Soft Processor, which is especially
developed for the Spartan-3-based FPGA architecture.

The MicroBlaze embedded processor soft core is a
reduced instruction set computer (RISC) optimized for
implementation in Xilinx Field Programmable Gate
Arrays (FPGAs). The functional block diagram of the
MicroBlaze core is shown in Figure 1

Fig. 1. MicroBlaze Core Block Diagram.

The MicroBlaze soft core processor is highly
configurable, allowing designers to select a specific
set of features required by the design and is
parameterized to allow selective enabling of additional
functionality.

The MicroBlaze core has been developed to
support a high degree of user configurability. This
allows tailoring of the processor to meet specific
cost/performance requirements. Configuration is done
via parameters that typically enable, size, or select
certain processor features.

For a complete hardware designed of the
embedded processor system, the Xilinx Embedded
Development Kit (EDK) was used.

The simplified flow for an embedded design is
presented in figure 2, and includes hardware and
software development, a device configuration with
needed IPs and a verification of those.

Fig. 2. Embedded Design Process Flow.

In this paper, the used IPs for peripherals of the
development board controlling and includes: a RS-232
port, slide and push-button switches and LCD module.

For RS-232 port control, the UART Lite module -
provided by Xilinx - was used with the following
features: 8-bit bus interfaces, one transmits and one
receives channel (full duplex) and a configurable baud
rate. But, the main advantage of using of the UART
module is the low resource utilization for hardware
implementation, about 50 flip-flops and 100 LUTs.

For slide and push-button switches control, the IP
used is a Xilinx-provided IP and get access to the four
slide switches and five push button switches. These
switches are use to control the development board and
the phases of the neural network.

For controlling the LCD module, it was necessary
to add in a custom peripheral. For that, it was required
to create a user peripheral from an HDL module, add
an instance of the imported peripheral, and modify the
system’s user constrain file to provide an interface to
the on-board LCD module.

The embedded hardware platform that includes the
processors, along with peripherals and memory blocks
is presented in figure 3. These blocks of IP, use an
interconnect network to communicate and additional
ports to connect with the peripherals.

Fig. 3. MicroBlaze Block Diagram.

After the embedded system was configured, the
embedded hardware platform is imported into System
generator project as a Black Box.

International Symposium for Design and Technology of Electronic Packages 13th Edition, Baia Mare, Romania

ISBN 978-973-713-188-1 284

The imported MicroBlaze processor interface is
exposed through the EDK processor block provided
by System Generator. In the figure 4 is shown the
communication between user-defined logic and the
MicroBlaze processor.

Fig. 4. Memory-Mapped User Logic

The memory-map needed for communications is
automatically created by the System generator and is
presented in figure 5.

Fig 5: Generated Memory-Mapped

2.2. Neural network design

The neural network designed deals with an
extendable digital architecture for the implementation
of a multilayer feedforward networks (MLF) and
Hebbian neural network using field programmable
gate arrays (FPGAs).

In order to design generic blocks, used for neural
network building, it was developed an algorithm for
setting the customizable block parameters according
to the chosen network topology.

From point of view of the role of the blocks into
design, these are divided in control blocks and
computing blocks, figure 6.

2.2.1. Control blocks

The control blocks are designed in MCode and
VHDL code and incorporated into system by Black
Box HDL and MCode Blocks. The role of these
blocks is to manage the control signal of the

processing bloc in order to initialize and command the
processing components

Fig. 6. Neural network Blocks

An important feature of the control block is to load
from Mathlab workspace the following variables: the
number of vectors used for training and the number of
bits used for data representation.

Depending on these variables, the control logic
block will configure the size of the RAMs used for
data and weights storage and will manage the enable
signals of the processing elements of the processing
block in order to run the processing block in a
propagation phase or in a training phase

The control block consists of one General Counter
block for all the layers and one Signal Generator block
for each layer in part.

Fig.7. Architecture of the control block

The properties of the block are set according to the
numbers of total layers, number of the neurons from
the layers and the number of layer from whom and in
different Function Block Parameters window, fig 8.

Fig.8. Function Block Parameters window for
parameters setting

International Symposium for Design and Technology of Electronic Packages 13th Edition, Baia Mare, Romania

ISBN 978-973-713-188-1 285

2.2.2. PROCESSING BLOCK

The processing blocks are the main block of the
design. It incorporates both the artificial neuron and
the logic for on-chip learning algorithm.

The structure of the artificial neuron consist in two
memory blocks, one for data samples and one for
weight coefficients, and one MAC unit, figure 9

Fig 9. Architecture of the neuron

In order to complete the neural network design,
beside the main processing block, we have created
block that are able to calculate the new weights that
minimize the total error. That means a series of blocks
that calculate the proper delay of the signals and some
blocks that computes the new weights of the output
layer, the error signal for each neuron and the values
of the corrected weights.

The overview architecture of the designed neural
network is presented in figure 10 and includes as an
inputs one input layer with seven neurons and one
target layer, one hidden layer with seven neurons and
an output layer with four neurons

Fig. 10. The architecture of the neural network

4. CONCLUSIONS

We have presented hardware architecture of
embedded system with on-chip learning controlled by
a generic control unit described in VHDL code,
MCode and Xilinx blocks. This method uses minimal
hardware resources for implementation of this kind of
data processing systems. The main advantage of this
solution is high modularity and versatility in neural
network designing.

The advantage of developing an embedded system
in EDK environment is that the computing core and
I/O resources are linked under the control of the
bitstream by a programmable interconnect architecture
that allows them to be wired together into systems.
FPGAs are high performance data processing devices
and its performance is derived from the ability they
provide to construct highly parallel architectures for
processing data.

A combination of increasingly high system clock
rates and a highly distributed memory architecture
gives the system designer an ability to exploit
parallelism in neural network applications that operate
on data streams.

The neural network architecture is build with
generic modules and used to design neural networks
that have the following features: on-line training and
on-chip learning, all weights have to be initialized
prior to the start of the learning process, the
initialization of the neurons number per layer, number
of layers, weights RAMs must be done by setting the
variables from the Function Block Parameters from
Matlab environment.

REFERENCES

[1] A. Tisan, S. Oniga, A. Buchman, C. Gavrincea, “Architecture
and Algorithms for Syntetizable Neural Networks with On-
Chip Learning”, International Symposium on Signals, Circuits
and Systems, ISSCS 2007, July 12-13, 2007, Iasi, Romania,
vol.1, p. 265 - 268, ISBN 1-4244-0968-3, IEEE Catalog
Number: 07EX1678, Library of Congress: 2007920356.

[2] A. Tisan, S. Oniga, C. Gavrincea, Hardware Implementation
of Various Neural Network with On-Chip Learning, WSEAS
TRANSACTIONS on SIGNAL PROCESSING, Issue 10,
Volume 2, October 2006, ISSN 1790-5022.

[3] EDK Concepts, Tools, and Techniques, www.xilinx.com/ise/
embedded/edk91i_docs/edk_ctt.pdf.

[4] Xilinx System Generator for DSP, User’s guide,
www.xilinx.com/Support/sw_manuals/sysgen_gs.pdf.

International Symposium for Design and Technology of Electronic Packages 13th Edition, Baia Mare, Romania

ISBN 978-973-713-188-1 286

http://www.xilinx.com/

